WZB Data Science Blog
  • Home
  • About
  • Legal notice / Impressum

Linkdump #103

February 8, 2019 6:46 pm , Markus Konrad
R
  • Half a dozen frequentist and Bayesian ways to measure the difference in means in two groups
  • Creation of semantic networks (with quanteda)
  • politicaldata – An R package for acquiring and analyzing political data — including polls, election results, legislator information, and demographic data.
  • How the BBC Visual and Data Journalism team works with graphics in R
Python
  • Matplotlib Tutorial – A Complete Guide to Python Plot w/ Examples
  • Python Developers Survey 2018 Results
  • StanfordNLP – Python natural language analysis package
Interesting articles, projects and news
  • Amazon Knows What You Buy. And It’s Building a Big Ad Business From It.
  • Mark Zuckerberg still thinks Facebook has made the world better
  • Open Corporates: Millionen deutsche Unternehmensdaten durchsuchbar gemacht
  • Explizite Unsicherheit soll KI-Algorithmen zu ethischen Entscheidungen verhelfen
  • Japans Regierung hackt eigene Bürger
  • Fraunhofer-Tool: Dank maschinellem Lernen automatisch “Fake News” erkennen
  • FOSDEM: Dezentrale WWW-Alternative Solid – jedem sein eigenes Like
  • Facebook zeigt sich zum 15. Geburtstag immun gegen Skandale
  • Missing Link: Post-normal – Wissenschaft in Zeiten unsicherer Fakten und alternativloser Technik
  • WIPO-Studie: Patentwelle bei Künstlicher Intelligenz rollt heran
Posted in: Linkdump

Comments are closed.

Post Navigation

← Previous Post
Next Post →
WZB Logo

Recent posts

  • Some thoughts about the use of cloud services and web APIs in social science research
  • Continuous Integration testing with GitHub Actions using tox and hypothesis
  • Batch transfer GitLab projects with the GitLab API
  • Spatially weighted averages in R with sf
  • Clustered standard errors with R

Categories

  • APIs (4)
  • COVID-19 (2)
  • d3.js (3)
  • Data Mining (9)
  • Databases (3)
  • Django (3)
  • Experiment Implementation (3)
  • General (4)
  • GIS / spatial data (9)
  • git (2)
  • IO (2)
  • JavaScript (1)
  • Linkdump (135)
  • Machine Learning (3)
  • Network analysis (3)
  • NLP & Text Analysis (10)
  • oTree (3)
  • Parallel computing (2)
  • PDFs (5)
  • Presentation slides (2)
  • Python (32)
  • R (15)
  • Shiny (2)
  • Statistics (1)
  • Testing (3)
  • Visualization (13)
  • Web Development (6)
  • Web Scraping (5)

Links

  • me @ twitter
  • WZB Website
  • WZB @ Github
  • R-bloggers
  • RWeekly.org

Links

  • me @ twitter
  • WZB Website
  • WZB @ Github
  • R-bloggers
  • RWeekly.org

Recent Posts

  • Some thoughts about the use of cloud services and web APIs in social science research
  • Continuous Integration testing with GitHub Actions using tox and hypothesis
  • Batch transfer GitLab projects with the GitLab API
  • Spatially weighted averages in R with sf
  • Clustered standard errors with R

Recent Comments

  • Some thoughts about the use of cloud services and web APIs in social science research – Data Science Austria on Some thoughts about the use of cloud services and web APIs in social science research
  • Samer on Clustered standard errors with R
  • Clustered standard errors with R - File4Me.com on Clustered standard errors with R
  • David Will on Interactive visualization of geospatial data with R Shiny
  • Simplifying geospatial features in R with sf and rmapshaper - File4Me.com on Simplifying geospatial features in R with sf and rmapshaper

Archives

  • March 2022
  • February 2022
  • July 2021
  • May 2021
  • April 2021
  • March 2021
  • January 2021
  • December 2020
  • November 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016

Categories

  • APIs
  • COVID-19
  • d3.js
  • Data Mining
  • Databases
  • Django
  • Experiment Implementation
  • General
  • GIS / spatial data
  • git
  • IO
  • JavaScript
  • Linkdump
  • Machine Learning
  • Network analysis
  • NLP & Text Analysis
  • oTree
  • Parallel computing
  • PDFs
  • Presentation slides
  • Python
  • R
  • Shiny
  • Statistics
  • Testing
  • Visualization
  • Web Development
  • Web Scraping

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
© Copyright 2025 - WZB Data Science Blog
Vortex Theme by WPVortex ⋅ WordPress