I created a project to showcase topic modeling with the tmtoolkit Python package: I use a corpus of articles from the German online news website Spiegel Online (SPON) to create a topic model for before and during the COVID-19 pandemic. This topic model is then used to analyze the volume of media coverage regarding the pandemic and how it changed over time.
National daily infection numbers clearly drive the volume of media coverage on COVID-19 during the observation period (January 2020 to end of August 2020) on SPON, which is probably not very surprising. Even though infection rates increased dramatically in the world in summer 2020 (e.g. in Brazil, India and USA), media coverage first decreased and then stayed at a moderate level, indicating that SPON doesn’t respond so much to rising infection rates at an international level.
You can have a look at the report here. All scripts are available in the GitHub repository.
Recent Comments